

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 9701/21

Paper 2 Structured Questions AS Core

October/November 2013

1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A Data Booklet is provided.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
Total		

This document consists of 9 printed pages and 3 blank pages.

- 1 Valence Shell Electron Pair Repulsion theory (VSEPR) is a model of electron-pair repulsion (including lone pairs) that can be used to deduce the shapes of, and bond angles in, simple molecules.
 - (a) Complete the table below by using simple hydrogen-containing compounds. One example has been included.

number of bond pairs	number of lone pairs	shape of molecule	formula of a molecule with this shape
3	0	trigonal planar	BH ₃
4	0		
3	1		
2	2		

[3]

(b) Tellurium, Te, proton number 52, is used in photovoltaic cells.

When fluorine gas is passed over tellurium at 150 °C, the colourless gas TeF₆ is formed.

(i) Draw a 'dot-and-cross' diagram of the TeF₆ molecule, showing outer electrons only.

(ii) What will be the shape of the TeF₆ molecule?

.....

(iii) What is the F–Te–F bond angle in TeF_6 ?

.....

[3]

[Total: 6]

2 The molecular formula C_3H_6 represents the compounds propene and cyclopropane.

For Examiner's Use

$$CH_{3}CH = CH_{2}$$

$$Propene$$

$$CH_{3}CH = CH_{2}$$

$$CH_{3}CH = CH_$$

(a) What is the H–C–H bond angle at the terminal = CH_2 group in propene?

.....[1]

- (b) Under suitable conditions, propene and cyclopropane each react with chlorine.
 - (i) With propene, 1,2-dichloropropane, CH₃CHClCH₂Cl is formed.

State fully what type of reaction this is.

.....[1]

(ii) When cyclopropane reacts with chlorine, three different compounds with the molecular formula $C_3H_4Cl_2$ can be formed.

Draw displayed structures of **each** of these three compounds.

[3]

[Total: 5]

Chl	orine	e gas is manufactured by the electrolysis of brine using a diaphragm cell.
(a)	(i)	Write half-equations, including state symbols, for the reactions occurring at each of the electrodes of a diaphragm cell.
		anode
		cathode
	(ii)	In the diaphragm cell, the anode is made of titanium and the cathode is made of steel.
		Suggest why steel is never used for the anode.
		[3]
(b)		orine is very reactive and will form compounds by direct combination with many ments.
	SOC	scribe what you would see when chlorine is passed over separate heated samples of lium and phosphorus. Pach case write an equation for the reaction.
	soc	lium
	pho	osphorus
		F43
		[4]

For Examiner's Use

(c) Chlorine reacts with aqueous sodium hydroxide in two different ways, depending on the conditions used. In each case, water, sodium chloride and one other chlorine-containing compound are formed.

For **each** condition below, give the formula of the **other** chlorine-containing compound and state the oxidation number of chlorine in it.

condition	formula of other chlorine-containing compound	oxidation number of chlorine in this compound
cold dilute NaOH(aq)		
hot concentrated NaOH(aq)		

[4]

(d)	Magnesium chloride, ${\rm MgC}l_{\rm 2}$, and silicon tetrachloride, ${\rm SiC}l_{\rm 4}$, each dissolve in or react with water.
	Suggest the approximate pH of the solution formed in each case.
	$MgC\mathit{l}_{2}$ $SiC\mathit{l}_{4}$
	Explain, with the aid of an equation, the difference between the two values.
	[5]
	[Total: 16]

4	Compound R	is a weak dip	protic (dibasic)) acid which is very	y soluble in water.
---	------------	---------------	------------------	----------------------	---------------------

(a)	A solution of R was prepared which contained 1.25 g of R in 250 cm ³ of solution.
	When 25.0 cm3 of this solution was titrated with 0.100 mol dm-3 NaOH, 21.6 cm3 of the
	alkali were needed for complete reaction.

(1)	Using the formula $\Pi_2 \wedge$ to represent K , construct a balanced equation for the reaction
	between H ₂ X and NaOH.
	-

- (ii) Use the data above to calculate the amount, in moles, of OH- ions used in the titration.
- (iii) Use your answers to (i) and (ii) to calculate the amount, in moles, of **R** present in 25.0 cm³ of solution.
- (iv) Calculate the amount, in moles, of **R** present in 250 cm³ of solution.
- (v) Calculate M_r of \mathbf{R} .

[5]

(b) Three possible structures for R are shown below.

S	Т	U
HO ₂ CCH=CHCO ₂ H	HO ₂ CCH(OH)CH ₂ CO ₂ H	HO ₂ CCH(OH)CH(OH)CO ₂ H

(i) Calculate the M_r of each of these acids.

(ii) Deduce which of the structures, $\bf S$, $\bf T$ or $\bf U$, correctly represents the structure of the acid, $\bf R$.

R is represented by

[2]

For Examiner's Use

It is possible to convert S , T , or	U	ınto	one	another.
--	---	------	-----	----------

(c)	State the reagent(s) and essential conditions that would be used for the following conversions.
	S into T
	S into U
	T into S
	[5]
(d)	Give the structural formula of the organic product formed in each of the following reactions.
	T reacting with an excess of Na
	U reacting with an excess of Na ₂ CO ₃
	[2]
(e)	The acid S shows stereoisomerism. Draw structures to show this isomerism. Label each isomer.
	[2]
(f)	When one of the isomers of $\bf S$ is heated at 110 °C in the absence of air, a cyclic compound $\bf V$, with molecular formula $C_4H_2O_3$, is formed. The other isomer of $\bf S$ does not react at this temperature.
	Suggest the displayed formula of V .

[2]

[Total: 18]

Propane, C₃H₈, and butane, C₄H₁₀, are components of Liquefied Petroleum Gas (LPG) which is widely used as a fuel for domestic cooking and heating. (a) (i) To which class of compounds do these two hydrocarbons belong? (ii) Write a balanced equation for the complete combustion of butane. [2] (b) When propane or butane is used in cooking, the saucepan may become covered by a solid black deposit. (i) What is the chemical name for this black solid? (ii) Write a balanced equation for its formation from butane. [2] **(c)** Propane and butane have different values of standard enthalpy change of combustion. Define the term standard enthalpy change of combustion. (d) A 125 cm³ sample of propane gas, measured at 20 °C and 101 kPa, was completely burnt

The heat produced raised the temperature of 200 g of water by 13.8 °C.

(i) Use the equation pV = nRT to calculate the mass of propone used.

Assume no heat losses occurred during this experiment.

For Examiner's Use

© UCLES 2013 9701/21/O/N/13

in air.

For Examiner's Use

this experiment.	om me <i>Dala B</i> o	oner to calculat	e the amount of	heat released in
		ers to (i) and (ii)	to calculate the e	energy produced
hailing points of mo	thang othang	oronano, and bu	utano aro givon l	[5]
bolling points of frie	inane, emane, p	propane, and bu	italie ale giveli i	Jelow.
compound	CH ₄	CH ₃ CH ₃	CH ₃ CH ₂ CH ₃	CH ₃ (CH ₂) ₂ CH ₃
boiling point/K	112	185	231	273
The isomer of butan Suggest an explana the table above.				
Suggest an explana				
	by the burning of 1 n boiling points of met compound boiling point/K	by the burning of 1 mol of propane. boiling points of methane, ethane, ethane, points of methane, ethane, et	by the burning of 1 mol of propane. e boiling points of methane, ethane, propane, and but compound CH ₄ CH ₃ CH ₃ boiling point/K 112 185	boiling points of methane, ethane, propane, and butane are given to

BLANK PAGE

9701/21/O/N/13

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.